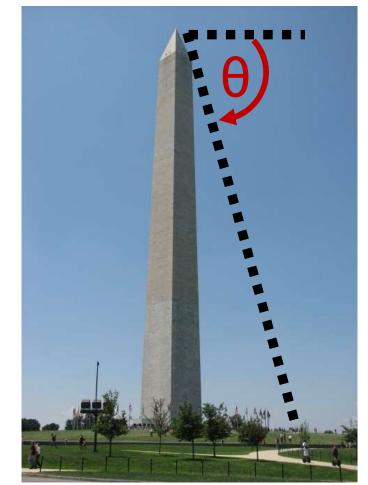
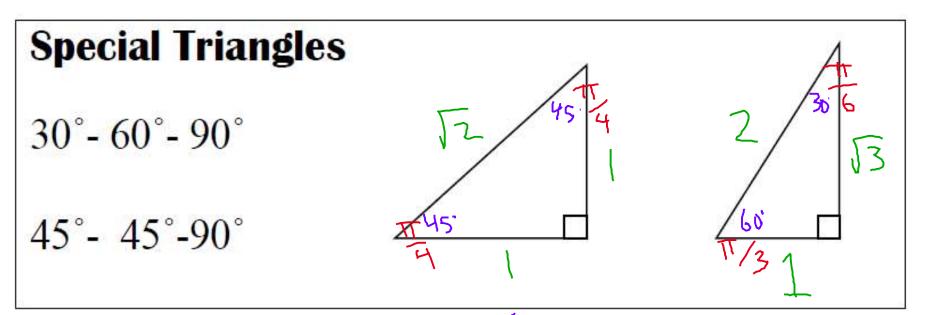

Warm-up: add on to the beginning of today's assignment:

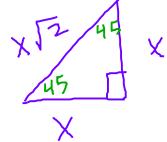
Solve without a calculator,


use special triangles:

Solution: $\frac{2+\sqrt{3}}{2}$ $\left(\cos\frac{\pi}{6} + \sin\frac{\pi}{6}\right)^2$ show all steps!! $(+)^{2} = (-+)^{2} = (-)$

Angle of Elevation:

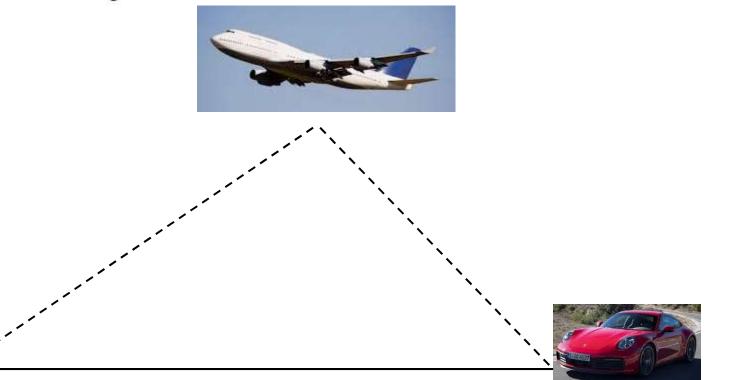

Angle of Descent or Angle of Depression:


#30,32,34: use values from special triangles

θ in degrees	heta in radians	$\sin heta$	$\cos \theta$	an heta	$\csc \theta$	$\sec \theta$	$\cot heta$
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	$\sqrt{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$

Note:
$$\sin 30^\circ = \cos \frac{60^\circ}{45^\circ}$$

 $\sin 45^\circ = \cos \frac{45^\circ}{30^\circ}$
 $\sin 60^\circ = \cos \frac{30^\circ}{50^\circ}$



Use special triangle ratios for #47,48,50

53

62. Determining a Distance An airplane is flying at an elevation of 5150 ft, directly above a straight highway. Two motorists are driving cars on the highway on opposite sides of the plane. The angle of depression to one car is 35°, and that to the other is 52°. How far apart are the cars?

